mGCTz‖

tbHXD‖Add-in Functions, List of Analysis Functions Part One

note

7ZBxx‖The Add-in functions are supplied by the UNO com.sun.star.sheet.addin.Analysis service.


To access this command...

Insert - Function - Category Add-In


giBfb‖

72V9T‖HEX2DEC

yXvGe‖The result is the decimal number for the hexadecimal number entered.

GSbiK‖Syntax

mopAX‖HEX2DEC(Number)

Dh5zP‖ Number is a hexadecimal number or a string that represents a hexadecimal number. It can have a maximum of 10 places. The most significant bit is the sign bit, the following bits return the value. Negative numbers are entered as two's complement.

MiUAf‖Example

n6r35‖ =HEX2DEC("6a") returns 106.

mGCuv‖

9PCdq‖BESSELY

vtVBN‖Calculates the Bessel function of the second kind Yn(x).

GSbiK‖Syntax

Vt5mP‖BESSELY(X; N)

UfdnC‖ X is the strictly positive value (X > 0) on which the function will be calculated.

Gz7Sd‖ N is a positive integer (N >= 0) representing the order of the Bessel function Yn(x)

MiUAf‖Example

tJ4qj‖=BESSELY(3.45, 4), returns -0.679848116844476

ajsaF‖=BESSELY(3.45, 4.333), returns -0.679848116844476, same as above because the fractional part of N is ignored.

Gzo4f‖=BESSELY(0, 3), returns Err:502 – invalid argument (X=0)

rXZsA‖

BFuEC‖HEX2BIN

WoEFG‖The result is the binary number for the hexadecimal number entered.

GSbiK‖Syntax

S4Zyx‖HEX2BIN(Number [; Places])

GBHbn‖ Number is a hexadecimal number or a string that represents a hexadecimal number. It can have a maximum of 10 places. The most significant bit is the sign bit, the following bits return the value. Negative numbers are entered as two's complement.

56CPC‖ Places is the number of places to be output.

MiUAf‖Example

FB7FM‖ =HEX2BIN("6a";8) returns 01101010.

VRuto‖

Cccmx‖BESSELJ

gPDfu‖Calculates the Bessel function of the first kind Jn(x) (cylinder function).

GSbiK‖Syntax

wB6NS‖BESSELJ(X; N)

fFmhm‖ X is the value on which the function will be calculated.

GvG4A‖ N is a positive integer (N >= 0) representing the order of the Bessel function Jn(x)

MiUAf‖Example

QX9X2‖=BESSELJ(3.45, 4), returns 0.196772639864984

qyW2X‖=BESSELJ(3.45, 4.333), returns 0.196772639864984, same as above because the fractional part of N is ignored.

Vv8kB‖=BESSELJ(-1, 3), returns -0.019563353982668

DgCph‖

DeeeB‖BIN2DEC

27YJG‖The result is the decimal number for the binary number entered.

GSbiK‖Syntax

XAXE3‖BIN2DEC(Number)

AzDBR‖ Number is a binary number. The number can have a maximum of 10 places (bits). The most significant bit is the sign bit. Negative numbers are entered as two's complement.

MiUAf‖Example

LrDtT‖ =BIN2DEC(1100100) returns 100.

wD2G3‖

F5hUA‖DEC2HEX

eLMju‖The result is the hexadecimal number for the decimal number entered.

GSbiK‖Syntax

T8PpC‖DEC2HEX(Number [; Places])

jCZNh‖ Number is a decimal number. If Number is negative, the function returns a hexadecimal number with 10 characters (40 bits). The most significant bit is the sign bit, the other 39 bits return the value.

8wwe3‖ Places means the number of places to be output.

MiUAf‖Example

kiKfG‖ =DEC2HEX(100;4) returns 0064.

hTxSZ‖

GDM2F‖ERFC.PRECISE

2iuRt‖Returns complementary values of the Gaussian error integral between x and infinity.

GSbiK‖Syntax

qxPZE‖ERFC.PRECISE(LowerLimit)

yoQSn‖ LowerLimit is the lower limit of the integral

MiUAf‖Example

DejrT‖ =ERFC.PRECISE(1) returns 0.157299.

XAFa7‖Technical information

tip

iV7XA‖This function is available since LibreOfficeDev 4.3.


7AVhU‖This function is not part of the Open Document Format for Office Applications (OpenDocument) Version 1.3. Part 4: Recalculated Formula (OpenFormula) Format standard. The name space is

COM.MICROSOFT.ERFC.PRECISE

DE8FG‖

KGiWM‖ERF.PRECISE

oWXzy‖Returns values of the Gaussian error integral between 0 and the given limit.

GSbiK‖Syntax

Bshvn‖ERF.PRECISE(LowerLimit)

VGFZF‖LowerLimit is the limit of the integral. The calculation takes place between 0 and this limit.

MiUAf‖Example

AFM2u‖ =ERF.PRECISE(1) returns 0.842701.

XAFa7‖Technical information

tip

iV7XA‖This function is available since LibreOfficeDev 4.3.


7AVhU‖This function is not part of the Open Document Format for Office Applications (OpenDocument) Version 1.3. Part 4: Recalculated Formula (OpenFormula) Format standard. The name space is

COM.MICROSOFT.ERF.PRECISE

syHzJ‖

SDaAA‖DEC2OCT

pp9kK‖The result is the octal number for the decimal number entered.

GSbiK‖Syntax

5ecSa‖DEC2OCT(Number [; Places])

XyTPz‖ Number is a decimal number. If Number is negative, the function returns an octal number with 10 characters (30 bits). The most significant bit is the sign bit, the other 29 bits return the value.

SiZca‖ Places means the number of places to be output.

MiUAf‖Example

CJyWm‖ =DEC2OCT(100;4) returns 0144.

3zKE2‖

TXoEu‖HEX2OCT

XF3HE‖The result is the octal number for the hexadecimal number entered.

GSbiK‖Syntax

BoGKD‖HEX2OCT(Number [; Places])

oPopv‖ Number is a hexadecimal number or a string that represents a hexadecimal number. It can have a maximum of 10 places. The most significant bit is the sign bit, the following bits return the value. Negative numbers are entered as two's complement.

ELTdG‖ Places is the number of places to be output.

MiUAf‖Example

MP6ri‖ =HEX2OCT("6a";4) returns 0152.

82HZD‖

Txm7F‖BIN2HEX

4vBam‖The result is the hexadecimal number for the binary number entered.

GSbiK‖Syntax

pLG3U‖BIN2HEX(Number [; Places])

Gfqxf‖ Number is a binary number. The number can have a maximum of 10 places (bits). The most significant bit is the sign bit. Negative numbers are entered as two's complement.

FLMAa‖Places means the number of places to be output.

MiUAf‖Example

YCFFe‖ =BIN2HEX(1100100;6) returns 000064.

Hj2po‖

V355A‖DELTA

ERTif‖The result is TRUE (1) if both numbers, which are delivered as an argument, are equal, otherwise it is FALSE (0).

GSbiK‖Syntax

6s5yD‖DELTA(Number1 [; Number2])

MiUAf‖Example

QwafY‖ =DELTA(1;2) returns 0.

AzaTr‖

XAmUH‖DEC2BIN

VHSmM‖ The result is the binary number for the decimal number entered between -512 and 511.

GSbiK‖Syntax

tPFjB‖DEC2BIN(Number [; Places])

Ykfsu‖ Number is a decimal number. If Number is negative, the function returns a binary number with 10 characters. The most significant bit is the sign bit, the other 9 bits return the value.

5RUfG‖ Places means the number of places to be output.

MiUAf‖Example

nAB6q‖ =DEC2BIN(100;8) returns 01100100.

G2CdG‖

YpfCj‖BESSELI

TKGQd‖Calculates the modified Bessel function of the first kind In(x).

GSbiK‖Syntax

5Ge9K‖BESSELI(X; N)

DoQTL‖ X is the value on which the function will be calculated.

H4cya‖ N is a positive integer (N >= 0) representing the order of the Bessel function In(x)

MiUAf‖Example

pT5nS‖=BESSELI(3.45, 4), returns 0.651416873060081

MZu39‖=BESSELI(3.45, 4.333), returns 0.651416873060081, same as above because the fractional part of N is ignored.

8yEjN‖=BESSELI(-1, 3), returns -0.022168424924332

SS2Pf‖

ataDM‖BIN2OCT

hkdHW‖ The result is the octal number for the binary number entered.

GSbiK‖Syntax

8pRVA‖BIN2OCT(Number [; Places])

JERKY‖ Number is a binary number. The number can have a maximum of 10 places (bits). The most significant bit is the sign bit. Negative numbers are entered as two's complement.

4EPc4‖ Places means the number of places to be output.

MiUAf‖Example

emXNL‖ =BIN2OCT(1100100;4) returns 0144.

Kq6rW‖

bncJr‖ERFC

rx8Ly‖Returns complementary values of the Gaussian error integral between x and infinity.

GSbiK‖Syntax

KSnvm‖ERFC(LowerLimit)

j7Cxm‖ LowerLimit is the lower limit of the integral

MiUAf‖Example

BfSvC‖ =ERFC(1) returns 0.157299.

AWSCK‖

dDDrU‖ERF

LJDCJ‖Returns values of the Gaussian error integral.

GSbiK‖Syntax

KmGKW‖ERF(LowerLimit [; UpperLimit])

LM6yN‖ LowerLimit is the lower limit of the integral.

a5A7v‖ UpperLimit is optional. It is the upper limit of the integral. If this value is missing, the calculation takes place between 0 and the lower limit.

MiUAf‖Example

qpkEE‖ =ERF(0;1) returns 0.842701.

mJ6CR‖

eW353‖GESTEP

kcDx8‖The result is 1 if Number is greater than or equal to Step.

GSbiK‖Syntax

cDDSb‖GESTEP(Number [; Step])

MiUAf‖Example

vGk5U‖ =GESTEP(5;1) returns 1.

tHMYb‖

jb2FF‖BESSELK

tuJCf‖Calculates the modified Bessel function of the second kind Kn(x).

GSbiK‖Syntax

wFWVq‖BESSELK(X; N)

oEJ3v‖ X is the strictly positive value (X > 0) on which the function will be calculated.

mCGmr‖ N is a positive integer (N >= 0) representing the order of the Bessel function Kn(x)

MiUAf‖Example

R9Psu‖=BESSELK(3.45, 4), returns 0.144803466373734

jAEzA‖=BESSELK(3.45, 4.333), returns 0.144803466373734, same as above because the fractional part of N is ignored.

vCmda‖=BESSELK(0, 3), returns Err:502 – invalid argument (X=0)